Evaluation Procedures for Forecasting with Spatiotemporal Data

نویسندگان

چکیده

The increasing use of sensor networks has led to an ever larger number available spatiotemporal datasets. Forecasting applications using this type data are frequently motivated by important domains such as environmental monitoring. Being able properly assess the performance different forecasting approaches is fundamental achieve progress. However, traditional estimation procedures, cross-validation, face challenges due implicit dependence between observations in In paper, we empirically compare several variants cross-validation (CV) and out-of-sample (OOS) both artificially generated real-world Our results show CV OOS reporting useful estimates, but they suggest that blocking space and/or time may be mitigating CV’s bias underestimate error. Overall, our study shows importance considering dependencies when estimating models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical spatiotemporal analog forecasting model for count data

Analog forecasting is a mechanism-free nonlinear method that forecasts a system forward in time by examining how past states deemed similar to the current state moved forward. Previous applications of analog forecasting has been successful at producing robust forecasts for a variety of ecological and physical processes, but it has typically been presented in an empirical or heuristic procedure,...

متن کامل

Forecasting confined spatiotemporal chaos with genetic algorithms.

A technique to forecast spatiotemporal time series is presented. It uses a proper orthogonal or Karhunen-Loève decomposition to encode large spatiotemporal data sets in a few time series, and genetic algorithms to efficiently extract dynamical rules from the data. The method works very well for confined systems displaying spatiotemporal chaos, as exemplified here by forecasting the evolution of...

متن کامل

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Benchmark Forecasting in Data Envelopment Analysis for Decision Making Units

Although DEA is a powerful method in evaluating DMUs, it does have some limitations. One of the limitations of this method is the result of the evaluation is based on previously data and the results are not proper for forecasting the future changes. So For this purpose, we design feedback loops for forecasting inputs and outputs through system dynamics and simulation. Then we use DEA model to f...

متن کامل

designing and validating a textbook evaluation questionnaire for reading comprehension ii and exploring its relationship with achievement

در هر برنامه آموزشی، مهم ترین فاکتور موثر بر موفقیت دانش آموزان کتاب درسی است (مک دونو و شاو 2003). در حقیقت ، کتاب قلب آموزش زبان انگلیسی است( شلدن 1988). به دلیل اهمیت والای کتاب به عنوان عنصر ضروری کلاس های آموزش زبان ، کتب باید به دقت ارزیابی و انتخاب شده تا از هرگونه تاثیر منفی بر دانش آموزان جلوگیری شود( لیتز). این تحقیق با طراحی پرسش نامه ارزیابی کتاب که فرصت ارزیابی معتبر را به اساتید د...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9060691